
Assorted Python Recipes
Release

May 09, 2015

Contents

1 pyserv: A simple bash function to use SimpleHTTPServer 3
1.1 The Final Code . 3
1.2 The Evolution . 3

2 How to Add Logging to a File When Using Requests 7
2.1 Why does this work? . 7

3 Contributing 9

4 Contributors 11
4.1 Authors . 11
4.2 Editors . 11

i

ii

Assorted Python Recipes, Release

This will be a easy and searchable set of recipes for popular packages as well as standard library packages developed
by myself and (hopefully) others.

The source can be found on GitHub, BitBucket, and Gitorious so pull requests will be accepted at all three places.

Contents 1

https://github.com/sigmavirus24/recipes
https://bitbucket.org/icordasc/recipes
https://gitorious.org/python-recipes/recipes

Assorted Python Recipes, Release

2 Contents

CHAPTER 1

pyserv: A simple bash function to use SimpleHTTPServer

Author Ian Cordasco

Origin http://www.coglib.com/~icordasc/blog/2012/11/one-liners.html

Tags bash, python, SimpleHTTPServer, screen,

1.1 The Final Code

pyserv() {
if [[-n $1]] ; then

port="$1"
else

port="8000"
fi

old_dir="$(pwd)"

if [[-n $2]] ; then
cd $2

fi

screen -dmS pyserv${port} python -m SimpleHTTPServer ${port}
echo "http://localhost:${port}"
echo "screen -r pyserv${port}"

if ! [["$(pwd)" == $old_dir]] ; then
cd $old_dir

fi
}

1.2 The Evolution

I have started to use a lot of tools that generate HTML for me and place them in pre-determined di-
rectories (e.g., coverage.py, sphinx, pelican). I can always use Firefox to navigate to those directories
(file:///home/sigma/sandbox/project/_build/html/index.html) but that is annoying without
a doubt. Sure I could bookmark that, but what if I move the project directory or change some settings? Wouldn’t it
be nice to just type a regular URL into the location bar? One solution is to just use python’s SimpleHTTPServer
module from the command-line like so

3

http://www.coglib.com/~icordasc/blog/2012/11/one-liners.html

Assorted Python Recipes, Release

$ cd _build/html
$ python -m SimpleHTTPServer 8080
^C
$ cd -

But that takes over the terminal and sending it to the background introduces ugly interlacing of output. So I then
started putting it in a screen session

$ cd _build/html
$ screen -dmS pyserver python -m SimpleHTTPServer 8080
$ cd -

Using -dm allows me to immediately place the screen session in the background instead of attaching it to the terminal.
The -S option allows me to give it a name so I can do screen -r pyserver instead of screen -ls; screen
-r pidnumber. But constantly having to type out the screen command was beginning to annoy me so I wrote a
function

pyserv() {
if [[-n $1]] ; then

port="$1"
else

port="8000"
fi

screen -dmS pyserv${port} python -m SimpleHTTPServer ${port}
echo "http://localhost:${port}"
echo "screen -r pyserv${port}"

}

This allowed me to not even need to set up a port by providing a default and echoed the url and screen command to
the terminal for me. I could then just type

$ cd _build/html ; pyserv ; cd -

But constantly having to type cd was beginning to annoy me as well and this resulted in the final iteration of this
function.

pyserv() {
if [[-n $1]] ; then

port="$1"
else

port="8000"
fi

old_dir="$(pwd)"

if [[-n $2]] ; then
cd $2

fi

screen -dmS pyserv${port} python -m SimpleHTTPServer ${port}
echo "http://localhost:${port}"
echo "screen -r pyserv${port}"

if ! [["$(pwd)" == $old_dir]] ; then
cd $old_dir

fi
}

4 Chapter 1. pyserv: A simple bash function to use SimpleHTTPServer

Assorted Python Recipes, Release

It has all the simplicity of the original function with more functionality:

• You can simply call pyserv in a directory and it will work

• It gives you the URL and screen alias.

• It will now change directories for you and serve the content from there, while placing you back in your original
directory

A couple simple invocations are

$ pyserv 8080 _build/html
$ pyserv 9090 htmlcov/

By placing this in your .bashrc, .bash_profile or any other bash related file, (and then sourcing it .
(filename)) you can have immediate access to this functionality.

1.2. The Evolution 5

Assorted Python Recipes, Release

6 Chapter 1. pyserv: A simple bash function to use SimpleHTTPServer

CHAPTER 2

How to Add Logging to a File When Using Requests

author Ian Cordasco

tags requests, logging, 1.x

In the latest versions of [Requests](https://github.com/kennethreitz/requests) the ability to configure sessions was
removed and with it the ability to set a verbose option with a file-like object. Recently, a user stepped into
#python-requests on Freenode and asked how to restore the behavior from before the refactor.

If one goes back in time (git checkout 9dce7861134c60596b91dfa8eda2ff66f5c5d5e5), you
will see (using grep) that the call took place in models.py and simply formatted a string using
datetime.now().isformat(), the request method and the URL. We no longer have that available to us, so
the next best thing is to use urllib3‘s built in logging. If you wanted, you could make it log to stderr by doing

import requests
requests.packages.urllib3.add_stderr_logger()

But then you’ll only have the logged output printed to your terminal and that is not what the user wanted. Another
way of doing this is to use the logging module yourself

import requests
import logging

logger = logging.getLogger('requests.packages.urllib3')
fh = logging.FileHandler()
...
logger.addHandler(fh, level=logging.DEBUG)

2.1 Why does this work?

urllib3 uses it’s namespace to register its own logger with the logging module (roughly speaking). In
this instance, urllib3 isn’t a standalone package but part of requests, so its proper namespace is
requests.packages.urllib3. Using that information, you can get the logging.Logger instance and
configure it to your needs and desires. Note, however, that this will give you more detail than the old verbose
configuration option did. As such, choose your level as you see fit.

7

https://github.com/kennethreitz/requests

Assorted Python Recipes, Release

8 Chapter 2. How to Add Logging to a File When Using Requests

CHAPTER 3

Contributing

If you want to make a contribution to these docs, fork the project on any of the three places it is available (GitHub,
BitBucket or Gitorious).

• Please ensure that what you are contributing is now already protected under copyright by your employer and
that you have full legal ability to contribute the code.

• Please provide an explanation of situations where the code is useful and tag your post with relevant words (to
make it easily searchable).

• All source code longer than 25 lines (unless it is incomplete) should be in a separate file and should be included
in the text using the .. literalinclude:: Sphinx directive. The file should reside in the source/
directory. For example:

file.py
import requests

do magic with requests
r = requests.get('http://httpbin.org/redirect/5',

allow_redirects=False)
etc

Here is my awesome ``file.py`` which does ...

.. literalinclude:: source/file.py
:language: python

etc.

• All complete code files should pass flake8.

• All links should have the URL at the bottom of the document to make reading the plain reStructuredText easier
on future editors. Think of links as footnotes.

• Add yourself to AUTHORS.rst if you’re contributing your own recipe.

• Add yourself to EDITORS.rst if you’re contributing edits to other people’s recipes.

• The recipes are not strictly restricted to python, but should be related to python.

9

http://pypi.python.org/pypi/flake8

Assorted Python Recipes, Release

10 Chapter 3. Contributing

CHAPTER 4

Contributors

4.1 Authors

• Ian Cordasco <graffatcolmingov@gmail.com>

4.2 Editors

If you want to make a contribution to these docs, fork the project on any of the three places it is available (GitHub,
BitBucket or Gitorious).

• Please ensure that what you are contributing is now already protected under copyright by your employer and
that you have full legal ability to contribute the code.

• Please provide an explanation of situations where the code is useful and tag your post with relevant words (to
make it easily searchable).

• All source code longer than 25 lines (unless it is incomplete) should be in a separate file and should be included
in the text using the .. literalinclude:: Sphinx directive. The file should reside in the source/
directory. For example:

file.py
import requests

do magic with requests
r = requests.get('http://httpbin.org/redirect/5',

allow_redirects=False)
etc

Here is my awesome ``file.py`` which does ...

.. literalinclude:: source/file.py
:language: python

etc.

• All complete code files should pass flake8.

• All links should have the URL at the bottom of the document to make reading the plain reStructuredText easier
on future editors. Think of links as footnotes.

• Add yourself to AUTHORS.rst if you’re contributing your own recipe.

• Add yourself to EDITORS.rst if you’re contributing edits to other people’s recipes.

11

mailto:graffatcolmingov@gmail.com
http://pypi.python.org/pypi/flake8

Assorted Python Recipes, Release

• The recipes are not strictly restricted to python, but should be related to python.

• Ian Cordasco <graffatcolmingov@gmail.com>

12 Chapter 4. Contributors

mailto:graffatcolmingov@gmail.com

	pyserv: A simple bash function to use SimpleHTTPServer
	The Final Code
	The Evolution

	How to Add Logging to a File When Using Requests
	Why does this work?

	Contributing
	Contributors
	Authors
	Editors

